Mawrth THEMIS spectral endmembers

- Basalt 1 surface is similar to TES Surface Type 1
- Basalt 2 surface is similar to TES Surface Type 2
- Dust and blackbody distributions represent varying contributions from dust or varying particle size /surface texture

THEMIS spectral unit mosaics

Basalt 1 (0-2.0)

Blackbody/ dust (0 to 1.3)

Basalt 2 (0-2.3)

RMS Error (0-0.01)

Mawrth Vallis

Spectral index mapping results

Michalski and Fergason, Icarus (in press)

Modeling of TES data: Average spectra of light-toned, intermediate-toned, and very dark-toned surfaces

Modeling of TES data: Average spectra of light-toned, intermediate-toned, and very dark-toned surfaces

Unmixing results: Full input library at the left and modified input library at the right (to determine which mineral groups are most important to fit the data)

Mineral group	Darkest Regions	Inter- mediate Regions	Light- toned Regions	Light- toned minus Feld	Light- toned minus Pyx	Light- toned minus Silica	Light- toned minus clay	Light- toned minus Zeo
Feldpars	36	44	16	-	12	27	16	17
Pyroxene + basaltic glass	27	9	7	0	-	14	9	13
Silica-rich phases	6	9	37	35	35	-	34	40
Clay minerals	20	18	11	20	18	13	-	15
Zeolites	2	10	13	21	14	27	24	-
Other	9	10	16	24	21	19	17	15
Total	100	100	100	100	100	100	100	100
RMS	0.203	0.249	0.200	0.215	0.200	0.287	0.200	0.209

OMEGA-TES disconnect 1: Actual abundances?

OMEGA-TES disconnect 2: Grain size surface textures

Summary

- Two units in TES/THEMIS data are similar to global surface types 1 and 2
 - Both contain significant plagioclase, pyroxene, and high-silica phases
 - Units are distinguished by inversely correlated olivine/pyroxene and high-silica phase abundance and differences are likely attributed to variable alteration
- NIR phyllosilicate surfaces are within the basalt 2 unit, but exhibit 10-15% higher high-silica phase abundances
- Phyllosilicates observed by CRISM are not detected with TES deconvolution, ratios, or indices
 - The disparity can be attributed to low abundance or texture/particle size effects
- Relatively high albedo, low dust surfaces are present
 - Very unusual for Mars
 - Generally low dust cover (dust increases towards the east)

TES analysis of THEMIS spectral units

- All surfaces have significant plagioclase, pyroxene, and high silica phases (~20-30%)
- Olivine/pyroxene are inversely correlated with high-Si phases
 - Similar to global Surface Types1 and 2
 - Consistent with variable aqueous alteration?
 - NIR phyllosilicate locations have strongest high-Si phase signature (~35% - with no phyllosilicates modeled)

Phyllosilicates

- Ratio spectra and 465 and 530 cm⁻¹ indices can give a more precise indication of phyllosilicates (*Ruff and Christensen*, 2007)
- Ratio spectrum has strong 465 cm⁻¹ feature but smectite doublet is absent
 - upper limit on phyllosilicate abundance:
 10-20% (can be much higher if present as loose, fine particles)
 - NIR phyllosilicate regions contain an additional high-silica phase that does not have a smectite doublet (such as amorphous silica or zeolite)

